Tuberculosis Epidemiology: A Global, National and Virginia Update

LAURA R. YOUNG, MPH, CIC

TB EPIDEMIOLOGIST/SURVEILLANCE COORDINATOR

MARCH 22, 2018

Overview

Global Tuberculosis (TB) Update
National TB Update*
State TB Update*

^{*}Please note that all 2018 data is provisional

Global Tuberculosis Incidence

- In 2017, an estimated 10 million people fell ill with TB, and 16% of those people died from the disease.
- TB is one of the top 10 causes of death worldwide
- Eight countries accounted for 67% of the new cases: India, China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh and South Africa.
- Disease burden caused by TB is falling globally, but not fast enough to reach the first (2020) milestones of the End TB Strategy.
- Nearly one in ever four people in the world is infected with latent TB.

VISION	A world free of tuberculosis – zero deaths, disease and suffering due to tuberculosis					
GOAL	End the global tuberculosis epidemic					
INDICATORS	MILESTONES		TARGETS			
	2020	2025	SDG 2030	END TB 2035		
Reduction in number of TB deaths compared with 2015 (%)	35%	75%	90%	95%		
Reduction in TB incidence rate	20%	50%	80%	90%		
compared with 2015 (%)	(<85/100 000)	(<55/100 000)	(<20/100 000)	(<10/100 000)		
TB-affected families facing catastrophic costs due to TB (%)	Zero	Zero	Zero	Zero		

Global MDR/RR-Tuberculosis

- There were an estimated 558,000 incident cases of MDR/RR-TB in 2017, with cases of MDR-TB accounting for 82%.
- The countries with the largest numbers of MDR/RR-TB were China, India and the Russian Federation.
- There were about 230,000 deaths from MDR/RR-TB in 2017.

Vaccine and Drug Research

■ INFINITIMTB Assav. AutoGenomics, USA

Molecular detection of TB and

TECHNOLOGIES IN DEVELOPMENT Molecular detection of TB and

- Gendrive MTB/RIF ID. Epistem, UK ■ Xpert XDR-TB cartridge, Cepheid, USA
- TruArray MDR-TB, Akkoni, USA
- FluoroType XDR-TB assay, Hain Lifescience, Germany
- MeltPro TB assay, Zeesan Biotech, China QuantuMDx, POC, UK

Tests for latent TB infection

- Diaskin test, Generium, Russian
- C-Tb test, Serum Institute of India. India

ON THE MARKET (EVIDENCE FOR USE NOT SUBMITTED TO WHO FOR EVALUATION)

Molecular detection of TB and

- drug resistance iCubate System, iCubate, USA
- Genechip, TB drug resistance array, Capital Bio, China
- EasyNAT TB Diagnostic kit, Ustar Biotechnologies, China
- Truelab/Truenat MTB, Molbio/bigtec Diagnostics, India

Culture-based drug susceptibility testing

■ SensititreTM MYCOTBI plate: ThermoFisher Scientific Inc., USA

TECHNOLOGIES ENDORSED BY WHO

drug resistance

An overview of progress in the development of TB diagnostics, August 2018

- Line probe assays for the detection of Mycobacterium tuberculosis (MTB), isoniazid and rifampicin resistance in acid-fast bacilli smear positive sputum or MTB cultures (FL-LPA). Hain Lifescience, Germany and Nipro,
- Line probe assays for the detection of resistance to fluoroquinolones and second-line injectable agents (SL-LPA), Hain Lifescience, Germany
- TB LAMP for detection of TB, Eiken, Japan

Nonmolecular technologies

Inteferon gamma release assay (IGRAs) for the diagnosis of latent TB infection (LTBI) Oxford Immunotec, UK, Qiagen, USA

Culture-based technologies

- Commercial liquid culture systems and rapid speciation
- Culture-based phenotypic DST using 1% critical proportion in LJ.7H10.7H11 and MGIT media.

Light and light-emitting diode microscopy (diagnosis and treatment monitoring)

SCHEDULED FOR WHO

Molecular detection of TB and drug resistance

- Molecular technologies for genotypic drug resistance testing (including sequencing technologies)
- FluoroType MTBDR, Hain Lifescience, Germany
- m2000 RealTime MTB System. Abbott, USA
- BD Max MDR-TB. Becton Dickinson, USA
- Roche cobas® MTB system, Roche Diagnostics, Basel, Switzerland

Radiology

Computer aided detection (CAD)

WHO POLICY UPDATES SCHEDULED FOR 2018/2019

Molecular detection of TB and drug resistance

- Alere Determine TB-LAM, Alere. USA (TB detection in people seriously ill with HIV)
- Xpert MTR/RIF Ultra for detection of TB and rifampicin resistance in nulmonary extrapulmonary and paediatric samples, Cepheid, USA

The global clinical development pipeline for new anti-TB drugs and regimens. August 2018

■ Delpazolid (LCB01-0371)

- Contezolid (MRX-1)b ■ GSK-303656b S0109
- Macozinone (PBTZ169)^b ■ Sutezolid (PNU-100480)^b ■ OPC-167832 Linezolid dose-ranging
 - Nitazoxanide
 - High dose rifampicin for DS-TB (PANACEA)
 - Bedaquiline and delamanid (ACTG A5343 DELIBERATE trial)
 - Bedaquiline Pretomanid -Moxifloxacin - Pyrazinamide (BPaMZ)
 - Bedaquiline and pretomanid with existing and re-purposed anti-TB drugs for MDR-TB (TB PRACTECAL Phase 2/3 trial)
 - Delamanid, linezolid, levofloxacin, and pyrazinamide for quinolone sensitive MDR-TB (MDR-END trial)
 - Levofloxacin with OBR for MDR-TB (OPTI-Q)

- Phase III* ■ Bedaquiline (TMC-207)^b
- Delamanid (OPC-67683)
- Pretomanid (PA-824)
- Clofazimine

trial)

- High dose rifampicin for treatment of DS-TB
- Rifapentine for treatment of DS-TB ■ Bedaquiline - Pretomanid - Linezolid (NiX-TB
- Bedaquiline Pretomanid Linezolid (ZeNix
- trial) Linezolid optimization Bedaguiline with two optimised background regimens (oral, 9 months; with oral and
- injectables, 6 months) (STREAM trial) ■ Bedaquiline - Linezolid - Levofloxacin with OBR⁶ for MDR-TB (NExT tiral)
- Bedaguiline and delamanid with various existing.
- regimens for MDR-TB and XDR-TB (endTB trial) ■ Pretomanid - Moxifloxacin - Pyrazinamide regimen (STAND trial)
- Rifapentine Moxifloxacin for treatment of DS-TB (TB Trial Consortium Study 31/A5349)
- New drug compounds are listed first, followed by repurposed drugs and then by regimens

■ Q203^b

■ TBA-7371

■ TBI-166

Source: Adapted from the Working Group on New TB Drugs pipeline. More information on these products and other ongoing projects can be found at http://www.newtbdrugs.org/pipeline.php

Vaccines to lower the risk of TB infection

- A vaccine or new drug treatment to cut the risk of TB disease in the 1.7 billion people with infection
- Rapid diagnostics that can be used at point of care
- Simpler, shorter drug regimens for treating TB disease

feedback.

Tuberculosis in the United States, 2018

- Provisional 2018 UnitedStates case count: 9,029
- Provisional 2018 UnitedStates case rate: 2.76 per100,000 population.
- This is the lowest rate and number of TB cases on record.

Tuberculosis Case Counts* — United States, 2010–2018

^{*}Based on provisional NTSS data as of February 11, 2019

Tuberculosis Incidence Rates* — United States, 2010–2018

^{*}Based on provisional NTSS data as of February 11, 2019

Tuberculosis Incidence Rates by State* — United States, 2018

^{*}Based on provisional NTSS data as of February 11, 2019

Percentage of Tuberculosis Cases by Country of Birth* — United States, 1993–2018

Tuberculosis Incidence Rates by Country of Birth* — United States, 1993–2018

^{*}Based on provisional NTSS data as of February 11, 2019

Tuberculosis Incidence Rates by Race/Ethnicity among U.S.-Born Persons* — United States, 2010–2018

^{*}Based on provisional NTSS data as of February 11, 2019

Tuberculosis Incidence Rates by Race/Ethnicity among Non-U.S.—Born Persons* — United States, 2010–2018

^{*}Based on provisional NTSS data as of February 11, 2019

Percentage of Non-U.S.—Born Tuberculosis Cases by Time of Arrival in United States* — 2018

^{*}Based on provisional NTSS data as of February 11, 2019

MDR and XDR Tuberculosis Cases* — United States, 2017

■ MDR TB – <u>128 cases</u>

- Non-U.S.—born **110** cases
- Prior history of TB 26 cases

■ XDR TB – <u>3 cases</u>

- Non-U.S.-born 3 cases
- Prior history of TB 1 case

^{*}Based on provisional NTSS data as of February 11, 2019

Annual Percentage of Tuberculosis Cases with HIV Coinfection*,† — United States, 1993–2018

^{*}Based on provisional NTSS data as of February 11, 2019

Annual Percentage of Tuberculosis Cases by Congregate Setting and Homelessness* — United States, 1993–2018

^{*}Based on provisional NTSS data as of February 11, 2019

Tuberculosis in Virginia, 2018*

- 205 cases in 2018
- Rate of 2.4 per 100,000 population

Tuberculosis Cases, Virginia, 2009-2018

■ Number of Cases

^{*}Data is provisional

Age Group of Tuberculosis Cases in Years, Virginia, 2014-2018

Tuberculosis Cases by Race and Ethnicity Among U.S.-Born Cases, Virginia 2009-2018

Tuberculosis Cases by Race and Ethnicity Among Non-U.S.-Born Cases, Virginia 2009-2018

Percent of Total Tuberculosis Cases by Nativity, Virginia, 2009-2018

County of Birth of Tuberculosis Cases, Virginia, 2018

Top Five Countries of Birth Among Non-US—Born TB Cases, Virginia, 2014-2018

	2014	2015	2016	2017	2018
1	India	Philippines	India	Philippines	Ethiopia
2	Vietnam	India	Philippines	India	Vietnam
3	Ethiopia	Vietnam	Ethiopia	Ethiopia	India
4	Philippines & El Salvador & South Korea		Vietnam	Vietnam	Philippines
5	Nepal &	South Korea	Honduras	Guatemala	Honduras &
	Pakistan	South Korea			South Korea

Tuberculosis Cases among Non-U.S.-Born Persons by Time of Residence in the U.S., Virginia, 2009-2018

Tuberculosis Cases with Diabetes, Virginia, 2009-2018

Tuberculosis Cases with HIV Co-Infection, Virginia, 2009-2018

Drug Resistance Among Tuberculosis Cases, Virginia, 2009-2018

How to we continue down from the plateau?

Addressing TB Infection

- Education
- Surveillance
- **Testing**
- Treatment

VIRGINIA REPORTABLE DISEASE LIST

Reporting of the following diseases is required by state law (Sections 32.1-36 and 32.1-37 of the Code of Virginia and 12 VAC 5-90-80 of the Board of Health Regulations for Disease Reporting and Control - http://www.vdh.virginia.gov/surveillance-and-investigation/division-ofsurveillance-and-investigation/commonwealth-of-virginiastate-board-of-health/). Report all conditions when suspected or confirmed to your local health department (LDH). Reports may be submitted by computer-generated printout, Epi-1 form, CDC or VDH surveillance form, or upon agreement with VDH, by means of secure electronic submission.

BOLD = Laboratories must submit initial isolate or other initial specimen to the Division of Consolidated Laboratory Services (DCLS) within 7 days of identification. All specimens must be identified with patient and physician information, and the LHD must be notified within the the timeframe specified below.

REPORT IMMEDIATELY

Anthrax (Bacillus anthracis) [a]

Botulism (Clostridium botulinum) [a]

Brucellosis (Brucella spp.) [a]

Cholera (Vibrio cholerae O1/O139) [a]

Coronavirus infection, severe (e.g., SARS-CoV, MERS-CoV) [a]

Diphtheria (Corynebacterium diphtheriae) [a]

Disease caused by an agent that may have been used as a weapon

Haemophilus influenzae infection, invasive [a]

Hepatitis A [a]

Influenza-associated deaths if younger than 18 years of age

Influenza A, novel virus [a]

Measles (Rubeola) [a]

Meningococcal disease (Neisseria meningitidis) [a]

Outbreaks, all (including but not limited to foodborne, healthcareassociated, occupational, toxic substance-related, waterborne, and any other outbreak)

Pertussis (Bordetella pertussis) [a]

Plague (Yersinia pestis) [a]

Poliovirus infection, including poliomyelitis [a]

Psittacosis (Chlamydophila psittaci) [a]

Q fever (Coxiella burnetti) [a]

Rabies, human and animal [a]

Rubella [a], including congenital rubella syndrome [a]

Smallpox (Variola virus) [a]

Syphilis (Treponema pallidum), congenital, primary,

and secondary [a]

Tuberculosis, active disease (Mycobacterium tuberculosis complex) [a,b]

Tularemia (Francisella tularensis) [a]

Typhoid/Paratyphoid infection (Salmonella Typhi, Salmonella

Unusual occurrence of disease of public health concern

Vaccinia, disease or adverse event [a]

Vibriosis (Vibrio spp.) [a,e]

Viral hemorrhagic fever [a]

Yellow fever [a]

LEGEND

[a] Reportable by directors of laboratories. These and all other conditions listed must be reported by physicians and directors of medical care facilities. [b] Laboratories report AFB, M. tuberculosis complex or any other mycobacteria, and antimicrobial susceptibility for M. tuberculosis complex. [c] Includes submission of Candida haemulonii specimens to DCLS.

[d] Laboratories that use EIA without a positive culture should forward positive stool specimens or enrichment broth to DCLS.

[e] Includes reporting of Photobacterium damselae and Grimontia hollisae.

REPORT WITHIN 3 DAYS

Amebiasis (Entamoeba histolytica) [a]

Arboviral infections (e.g., CHIK, dengue, EEE, LAC, SLE, WNV, Zika) [a]

Babesiosis (Babesia spp.) [a]

Campylobacteriosis (Campylobacter spp.) [a]

Candida auris, infection or colonization [a.c]

Carbapenemase-producing organism, infection or colonization [a]

Chancroid (Haemophilus ducrevi) [a]

Chickenpox (Varicella virus) [a]

Chlamydia trachomatis infection [a]

Cryptosporidiosis (Cryptosporidium spp.) [a]

Cyclosporiasis (Cyclospora spp.) [a]

Ehrlichiosis/Anaplasmosis (Ehrlichia spp., Anaplasma phagocytophilum) [a]

Giardiasis (Giardia spp.) [a]

Gonorrhea (Neisseria gonorrhoeae) [a]

Granuloma inquinale (Calymmatobacterium granulomatis)

Hantavirus pulmonary syndrome [a]

Hemolytic uremic syndrome (HUS)

Hepatitis B (acute and chronic) [a]

Hepatitis C (acute and chronic) [a]

Hepatitis, other acute viral [a]

Human immunodeficiency virus (HIV) infection [a]

Influenza, confirmed seasonal strain [a]

Lead, blood levels [a]

Legionellosis (Legionella spp.) [a]

Leprosy/Hansen's disease (Mycobacterium leprae)

Leptospirosis (Leptospira interrogans) [a]

Listeriosis (Listeria monocytogenes) [a]

Lyme disease (Borrelia spp.) [a]

Lymphogranuloma venereum (Chlamydia trachomatis)

Malaria (Plasmodium spp.) [a]

Mumps [a]

Neonatal abstinence syndrome (NAS)

Ophthalmia neonatorum

Rabies treatment, post-exposure

Salmonellosis (Salmonella spp.) [a]

Shiga toxin-producing Escherichia coli infection [a.d]

Shigellosis (Shigella spp.) [a]

Spotted fever rickettsiosis (Rickettsia spp.) [a]

Streptococcal disease, Group A, invasive or toxic shock [a]

Streptococcus pneumoniae infection, invasive and <5 years of age [a] Syphilis (Treponema pallidum), if not primary, secondary, or congenital

Tetanus (Clostridium tetani)

Toxic substance-related illness [a] pella spiralis) [a]

Tuberculosis infection [a]

Staphylococcus aureus infection [a]

Yersiniosis (Yersinia spp.) [a]

Effective November 2019

Labs Currently Reporting IGRA via ELR:

- LabCorp
- Quest Horsham
- Quest Atlanta
- Quest Teterboro
- Quest Tampa
- Riverside Walter Reed
- Riverside Regional Medical Center
- Riverside Tappahannock Hospital
- Riverside Doctors Hospital of Williamsburg
- Riverside Memorial Hospital

- Mary Immaculate Hospital
- St Mary's Hospital
- ARUP Laboratories
- Lewis Gale Medical Center
- Va Medical Center Salem
- Catawba Hospital
- Smyth Community Hospital
- Russell Medical Center
- DePaul Medical Center

Reports Received

1493 Reports

- 885 Electronic Lab Reports (deduplicated)
- 203 Electronic Epi-1s through the RedCap Portal
- 405 faxed/mailed reports

ELR IGRA Results by District of Residence, 11/11/2018-3/21/2019

Next Steps

- VDH TB Program is working to enter/create investigations in VEDSS for all current LTBI reports
- Provide districts with district level feedback
- Convene LTBI Work Group thank you to those who have volunteered!
- Review level of reporting (actionable vs. purely surveillance)
- Develop education, tools, recommendations and strategies for moving forward in collaboration with districts and LTBI Work Group
 - Identification of reporting gaps
 - Provider outreach
 - Targeted follow-up

Program Reminder

Please report your confirmed and presumptive cases to the VDH TB Program via RedCap within three days

Questions?

Contact:

Laura R. Young

laura.r.young@vdh.virginia.gov

804-864-7922

References

World TB Day — March 24, 2019. MMWR Morb Mortal Wkly Rep 2019;68:257.

DOI: http://dx.doi.org/10.15585/mmwr.mm6811a1

Global Tuberculosis Report, 2018. World Health Organization.

https://www.who.int/tb/publications/global_report/gtbr2018_main_text_28Feb2019.pdf?ua=1

Amish Talwar, MD, MPH; Clarisse A. Tsang, MPH; Sandy F. Price; Robert H. Pratt; William L. Walker, DVM, PhD; Kristine M. Schmit, MD, MPH; Adam J. Langer, DVM, MPH. Tuberculosis — United States, 2018. Provisional Surveillance Data for World TB Day March 14, 2019.